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1 Groups of Order 12,. . . ,24

1.1 Groups of order 12

Last time we introduced A4, the symmetries of a tetrahedron, and the binary dihedral
group as nonabelian groups of order 12. Recall, that if we have some homomorphism
S3 → SO3(R), then the inverse image has order 2× |G|. If G = S3, then we get A4.

Look at the rotations of a tetrahedron; what are the conjugacy classes? We have

1. identity

2. rotation by 2π/3 (4 of these)

3. rotation by 4π/3 (4 of these)

4. pick opposite edges and reflect across them (3 of these).

1.1.1 Sylow theorems

Recall that if H is a subgroup of G, the |H| divides |G|. Suppose m divides |G|. Does G
have a subgroup of order m? In general, the answer is no. 6 divides the order of A4, but
there is no subgroup of order 6; this is the smallest counterexample. However, the Sylow
theorems provide cases in which this must be true.

Theorem 1.1 (Sylow). Suppose p is prime, pn divides |G|, and pn+1 does not divide |G|.
Then

1. G has a subgroup of order pn (called a Sylow p-subgroup or p-Sylow subgroup).

2. All such subgroups are conjugate.

3. There are 1 (mod p) such subgroups (and this number divides |G|).

4. Any subgroup of order pm with m ≤ n is contained in some subgroup of order pn.
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Proof. To prove part (1), we have 2 cases and proceed by induction on |G|. The first case
is when some proper subgroup H has index prime to p. Then pn divides H, so H has a
subgroup of order pn by induction. The second case is when all proper subgroups have
index divisible by p. Look at the adjoint action of G on itself. Then any orbit of G has 1
element (stabilizer = G) or a multiple of p elements (stabilizer of points 6= G). Then, as
we showed before, the order of the center is divisible by p. Pick g ∈ Z of order p. Then
G/ 〈g〉 has a subgroup of order pn−1 by induction. The inverse image of this subgroup has
order pn.

See Lang for parts (2),(3), and (4), or do them as an exercise.

Applying this theorem to subgroups of order 3 of groups of order 12, the number of
such subgroups is 1 (mod 3) and divides 12. Then the number of is 1 or 4. If it is 1, then
the subgroup is normal. Also by the Sylow theorem, G has a subgroup of order 22 = 4.
In this case, G is a semidirect product of a normal subgroup of order 3 and a subgroup
of order 4. Look at the action of a group of order 4 on it. If Z/4Z acts trivially, we get
Z/12Z. If it acts nontrivially, we get the binary dihedral group. If we have Z/2Z, and it
acts trivially, we get Z/3Z× (Z/2Z)2; the nontrivial action gives us D12.

If we have 4 subgroups of order 3, label them A1, A2, A3, A4, where Ai ∩ Aj = {e} if
i 6= j. So we get 8 = 4 × 2 elements of order 3. This leaves 4 elements not of order 3.
We know there is a subgroup of order 4 (by Sylow), so we get 3 elements of order 4, and
this subgroup is normal. So G is the semidirect product of the subgroup of order 4 by
subgroups Z/3Z. Z/3Z acts nontrivially on the subgroup of order 4. The only possibility
is Z/3Z acting on (Z/3Z)2, so there is only 1 possible group. This group is A4, since it has
4 subgroups of order 3 (fix one of the 4 vertices).

1.2 Solvability

So far we have shown that groups of order ≤ 12 can be split up into products with cyclic
groups.

Definition 1.1. A finite group is called solvable if either

1. it is cyclic

2. it has a normal subgroup N with N and G/N solvable.

Definition 1.2. G is callled simple if has no normal subgroup other than {e} and itself.

Example 1.1. The rotations of an icosahedron is a non-cyclic simple group. Look at the
conjugacy classes:

1. identity (order 1)

2. rotation by 2π/3 (order 3, 20 of them, each corresponding to a face)
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3. rotation by 2π/5 (order 5, 12 of them, each corresponding to a vertex)

4. rotation by 4π/5 (order 5, 12 of them, each corresponding to a vertex)

5. rotation by π (order 2, 15 of them, (number of edges)/2).

Any normal subgroup must be a union of conjugacy classes. Suppose n is the order of a nor-
mal subgroup. Then n = 1+ some of {12, 12, 15, 20}, and n = 1, 2, 3, 5, 6, 10, 12, 15, 20, 30, 60.
Then the only solutions are n = 1 or n = 60, which shows that this group is simple.

Every finite group can be split up into simple groups.

Theorem 1.2 (Jordan-Holder). The set of simple groups we get does not depend on the
choice of splitting.

Proof. See Lang.1

Finite simple groups have been classified as 18 types in infinite series and 26 others
(sporadic).

Example 1.2. GLn(Fp) gives rise to SLn(Fp) by quotienting out by the kernel of the
determinant map, and SLn(Fp) gives rise to PSLn(Fp) by quotienting out by the center.

1.3 Groups of order 13, 14, and 15

13 is prime, and 14 is of order 2p, so our previous results give us:

I Groups of order 13

I Z/13Z

I Groups of order 14

I Z/14Z
I the dihedral group D14

For groups of order 15, we prove general results for groups of order p, q for primes p < q.
The Sylow theorems give us that G has a subgroup of order q. The number of conjugates

is 1 (mod q) and divides pq. So the only possibility is 1. So G has a normal subgroup
Z/qZ. SO G is a semidirect product of Z/qZ by Z/pZ. How can Z/pZ act on Z/qZ?
Aut(Z/qZ) = (Z/qZ)∗, which has order q − 1. This is cyclic (will prove later when we
cover fields), so it has 1 subgroup of order p if p divides q − 1. So either p does not divide
q− 1 or p divides q− 1. In the first case, the only subgroup of order pq is cyclic, so we get
1 group of order 15. In the second case, there are 2 groups: the first is the cyclic group
(comes from the trivial action), and the second is Z/qZ o Z/pZ. We summarize this as

1Professor Borcherds couldn’t really make sense of the proof in Lang, and he has never actually used
the Jordan-Holder theorem, which is why proof here has been omitted.
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I Groups of order pq (p < q)

I If p divides q − 1

I Z/pqZ
I If p does not divide q − 1

I Z/pqZ
I Z/qZ o Z/pZ.

Example 1.3. Let p = 2. 2 divides q − 1, so we get the cyclic and dihedral groups.

Example 1.4. Let p = 3 and q = 7. 3 divides 7− 1, so we get a nonabelian group. This
is the smallest non-abelian group of odd order.

1.4 Groups of order 16

Groups of order 16 are a mess (same is true for pn, where n ≥ 4). We just list them and
not prove anything.

I Groups of order 16

I Abelian

I Z/16Z
I Z/8Z× Z/2Z
I Z/4Z× Z/4Z
I Z/4Z× (Z/2Z)2

I (Z/2Z)4

I Nonabelian, with an element of order 8

I Generalized quaternion: g8 = 1, aga−1 = g−1, a2 = g4

I Dihedral: g8 = 1, aga−1 = g−1, a2 = 1

I Semidihedral: g8 = 1, aga−1 = g3, a2 = 1

I (Nameless): g8 = 1, aga−1 = g5, a2 = 1

I Products

I Q8 × Z/2Z
I D8 × Z/2Z

I Semidirect products

I Z/4Z o Z/4Z
I (Z/2Z)2 o Z/4Z

I Miscellaneous

I Pauli matrices, generated by the matrices(
±1 0
0 ±1

)
,

(
±i 0
0 ±i

)
,

(
0 ±1
±1 0

)
,

(
0 ±i
±i 0

)
.

4



1.5 Finitely generated abelian groups

So far, the finitely generated abelian groups we know about are finite products of Z and
Z/nZ for n ≥ 1. These are actually all the examples.

Theorem 1.3. Let G be a finitely generated abelian group. Then G is a finite product of
groups of the form Z or Z/nZ for n ≥ 1.

Proof. Suppose G is abelian (written additively), generated by g1, . . . , gn. We have the
relations m1,1g1 +m1,2g2 + · · ·+m1,ngn = 0, etc, which give us a (possibly infinite) matrix
of the coefficients. We can simplify the matrix by adding k times any column to any other;
this is a change of generators gi 7→ gi + kgj . We can add k times any row to any other
row; if rows R = S = 0, this is equivalent to R = 0 and kR + S = 0. We can apply
these operations to make m1,1 as small as possible. Subtract multiples of column 1 from
other columns to make row 1 have only 1 nonzero entry (m1,1). This is possible because
m1,1 divides m1,2; otherwise m1,2 = km1,1 + r for |r| < m1, and we could subtract km1,1

from m1,2 and then subtract r = m1,2 from m1,1 to make m1,1 smaller. We can kill off the
first column in the same way, leaving m1,1 as the only nonzero entry in the first column.
Repeat this whole process with m2,2 and so on to get a matrix where only mi,i is nonzero
for 1 ≤ i ≤ n. So our group is now generated by g1, . . . , gn with the relations m1,1g1 = 0,
m2,2g2 = 0,. . . . So G ∼= Z/m1,1Z × Z/m2,2Z × · · · × Z/mn,nZ, where if mi,i = 0, we just
have Z in the product.

Remark 1.1. This decomposition is unique if we insist that mi,i divides mj,j for i < j or
if we insist that all mi,i are prime powers or 0, and order does not matter.

1.6 Groups of order 17,. . . ,24

17 is prime, so we have

I Groups of order 17

I Z/17Z

Groups of order 18 have a normal subgroup of order 32. We can then classify the groups
by semidirect products to get 5 groups.

I Groups of order 18

I 5 semidirect product groups

I Groups of order 19

I Z/19Z
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Groups of order 20 have a normal subgroup of order 5. We can then classify the groups
by semidirect products to get 5 groups, as in the case of order 18.

I Groups of order 20

I 5 semidirect product groups

21 = pq for p = 3 and 7 = q (and 3 divides 7− 1), so we have

I Groups of order 21

I Z/pqZ

22 = 2p, so we have

I Groups of order 22

I Z/22Z

23 is prime, so we have

I Groups of order 23

I Z/23Z

I Groups of order 24

I the symmetric group S4

I Binary dihedral group (inverse image of A4 under S3 → SO3)

I a dozen or so others. . .
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