Math 250A Lecture 4 Notes

Daniel Raban

September 5, 2017

1 Groups of Order $12, \ldots, 24$

1.1 Groups of order 12

Last time we introduced A_4 , the symmetries of a tetrahedron, and the binary dihedral group as nonabelian groups of order 12. Recall, that if we have some homomorphism $S^3 \to SO_3(\mathbb{R})$, then the inverse image has order $2 \times |G|$. If $G = S_3$, then we get A_4 .

Look at the rotations of a tetrahedron; what are the conjugacy classes? We have

- 1. identity
- 2. rotation by $2\pi/3$ (4 of these)
- 3. rotation by $4\pi/3$ (4 of these)
- 4. pick opposite edges and reflect across them (3 of these).

1.1.1 Sylow theorems

Recall that if H is a subgroup of G, the |H| divides |G|. Suppose m divides |G|. Does G have a subgroup of order m? In general, the answer is no. 6 divides the order of A_4 , but there is no subgroup of order 6; this is the smallest counterexample. However, the Sylow theorems provide cases in which this must be true.

Theorem 1.1 (Sylow). Suppose p is prime, p^n divides |G|, and p^{n+1} does not divide |G|. Then

- 1. G has a subgroup of order p^n (called a Sylow p-subgroup or p-Sylow subgroup).
- 2. All such subgroups are conjugate.
- 3. There are 1 (mod p) such subgroups (and this number divides |G|).
- 4. Any subgroup of order p^m with $m \leq n$ is contained in some subgroup of order p^n .

Proof. To prove part (1), we have 2 cases and proceed by induction on |G|. The first case is when some proper subgroup H has index prime to p. Then p^n divides H, so H has a subgroup of order p^n by induction. The second case is when all proper subgroups have index divisible by p. Look at the adjoint action of G on itself. Then any orbit of G has 1 element (stabilizer = G) or a multiple of p elements (stabilizer of points $\neq G$). Then, as we showed before, the order of the center is divisible by p. Pick $g \in Z$ of order p. Then $G/\langle g \rangle$ has a subgroup of order p^{n-1} by induction. The inverse image of this subgroup has order p^n .

See Lang for parts (2),(3), and (4), or do them as an exercise.

Applying this theorem to subgroups of order 3 of groups of order 12, the number of such subgroups is 1 (mod 3) and divides 12. Then the number of is 1 or 4. If it is 1, then the subgroup is normal. Also by the Sylow theorem, G has a subgroup of order $2^2 = 4$. In this case, G is a semidirect product of a normal subgroup of order 3 and a subgroup of order 4. Look at the action of a group of order 4 on it. If $\mathbb{Z}/4\mathbb{Z}$ acts trivially, we get $\mathbb{Z}/12\mathbb{Z}$. If it acts nontrivially, we get the binary dihedral group. If we have $\mathbb{Z}/2\mathbb{Z}$, and it acts trivially, we get $\mathbb{Z}/3\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$; the nontrivial action gives us D_{12} .

If we have 4 subgroups of order 3, label them A_1, A_2, A_3, A_4 , where $A_i \cap A_j = \{e\}$ if $i \neq j$. So we get $8 = 4 \times 2$ elements of order 3. This leaves 4 elements not of order 3. We know there is a subgroup of order 4 (by Sylow), so we get 3 elements of order 4, and this subgroup is normal. So G is the semidirect product of the subgroup of order 4 by subgroups $\mathbb{Z}/3\mathbb{Z}$. $\mathbb{Z}/3\mathbb{Z}$ acts nontrivially on the subgroup of order 4. The only possibility is $\mathbb{Z}/3\mathbb{Z}$ acting on $(\mathbb{Z}/3\mathbb{Z})^2$, so there is only 1 possible group. This group is A_4 , since it has 4 subgroups of order 3 (fix one of the 4 vertices).

1.2 Solvability

So far we have shown that groups of order ≤ 12 can be split up into products with cyclic groups.

Definition 1.1. A finite group is called *solvable* if either

- 1. it is cyclic
- 2. it has a normal subgroup N with N and G/N solvable.

Definition 1.2. G is called *simple* if has no normal subgroup other than $\{e\}$ and itself.

Example 1.1. The rotations of an icosahedron is a non-cyclic simple group. Look at the conjugacy classes:

- 1. identity (order 1)
- 2. rotation by $2\pi/3$ (order 3, 20 of them, each corresponding to a face)

- 3. rotation by $2\pi/5$ (order 5, 12 of them, each corresponding to a vertex)
- 4. rotation by $4\pi/5$ (order 5, 12 of them, each corresponding to a vertex)
- 5. rotation by π (order 2, 15 of them, (number of edges)/2).

Any normal subgroup must be a union of conjugacy classes. Suppose n is the order of a normal subgroup. Then $n = 1 + \text{some of } \{12, 12, 15, 20\}$, and n = 1, 2, 3, 5, 6, 10, 12, 15, 20, 30, 60. Then the only solutions are n = 1 or n = 60, which shows that this group is simple.

Every finite group can be split up into simple groups.

Theorem 1.2 (Jordan-Holder). The set of simple groups we get does not depend on the choice of splitting.

Proof. See Lang.¹

Finite simple groups have been classified as 18 types in infinite series and 26 others (sporadic).

Example 1.2. $\operatorname{GL}_n(\mathbb{F}_p)$ gives rise to $\operatorname{SL}_n(\mathbb{F}_p)$ by quotienting out by the kernel of the determinant map, and $\operatorname{SL}_n(\mathbb{F}_p)$ gives rise to $\operatorname{PSL}_n(\mathbb{F}_p)$ by quotienting out by the center.

1.3 Groups of order 13, 14, and 15

13 is prime, and 14 is of order 2p, so our previous results give us:

- ► Groups of order 13
 - ► Z/13Z
- ▶ Groups of order 14
 - $\blacktriangleright \mathbb{Z}/14\mathbb{Z}$
 - \blacktriangleright the dihedral group D_{14}

For groups of order 15, we prove general results for groups of order p, q for primes p < q. The Sylow theorems give us that G has a subgroup of order q. The number of conjugates is 1 (mod q) and divides pq. So the only possibility is 1. So G has a normal subgroup $\mathbb{Z}/q\mathbb{Z}$. SO G is a semidirect product of $\mathbb{Z}/q\mathbb{Z}$ by $\mathbb{Z}/p\mathbb{Z}$. How can $\mathbb{Z}/p\mathbb{Z}$ act on $\mathbb{Z}/q\mathbb{Z}$? Aut $(\mathbb{Z}/q\mathbb{Z}) = (\mathbb{Z}/q\mathbb{Z})^*$, which has order q - 1. This is cyclic (will prove later when we cover fields), so it has 1 subgroup of order p if p divides q - 1. So either p does not divide q - 1 or p divides q - 1. In the first case, the only subgroup of order pq is cyclic, so we get 1 group of order 15. In the second case, there are 2 groups: the first is the cyclic group (comes from the trivial action), and the second is $\mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$. We summarize this as

¹Professor Borcherds couldn't really make sense of the proof in Lang, and he has never actually used the Jordan-Holder theorem, which is why proof here has been omitted.

- ▶ Groups of order pq (p < q)
 - ▶ If p divides q 1
 - $\blacktriangleright \mathbb{Z}/pq\mathbb{Z}$
 - ▶ If p does not divide q 1
 - $\blacktriangleright \mathbb{Z}/pq\mathbb{Z}$
 - $\blacktriangleright \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}.$

Example 1.3. Let p = 2. 2 divides q - 1, so we get the cyclic and dihedral groups.

Example 1.4. Let p = 3 and q = 7. 3 divides 7 - 1, so we get a nonabelian group. This is the smallest non-abelian group of odd order.

1.4 Groups of order 16

Groups of order 16 are a mess (same is true for p^n , where $n \ge 4$). We just list them and not prove anything.

- ► Groups of order 16
 - ▶ Abelian
 - ► Z/16Z
 - $\blacktriangleright \ \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 - $\blacktriangleright \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$
 - $\blacktriangleright \mathbb{Z}/4\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$
 - \blacktriangleright $(\mathbb{Z}/2\mathbb{Z})^4$
 - ▶ Nonabelian, with an element of order 8
 - ▶ Generalized quaternion: $g^8 = 1$, $aga^{-1} = g^{-1}$, $a^2 = g^4$
 - ▶ Dihedral: $g^8 = 1$, $aga^{-1} = g^{-1}$, $a^2 = 1$
 - ▶ Semidihedral: $g^8 = 1$, $aga^{-1} = g^3$, $a^2 = 1$
 - (Nameless): $g^8 = 1$, $aga^{-1} = g^5$, $a^2 = 1$
 - ► Products
 - $\blacktriangleright Q_8 \times \mathbb{Z}/2\mathbb{Z}$
 - $\blacktriangleright D_8 \times \mathbb{Z}/2\mathbb{Z}$
 - ► Semidirect products
 - $\blacktriangleright \mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$
 - $\blacktriangleright \ (\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/4\mathbb{Z}$
 - ► Miscellaneous
 - ▶ Pauli matrices, generated by the matrices

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}, \begin{pmatrix} \pm i & 0 \\ 0 & \pm i \end{pmatrix}, \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \pm i \\ \pm i & 0 \end{pmatrix}.$$

1.5 Finitely generated abelian groups

So far, the finitely generated abelian groups we know about are finite products of \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for $n \geq 1$. These are actually all the examples.

Theorem 1.3. Let G be a finitely generated abelian group. Then G is a finite product of groups of the form \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for $n \geq 1$.

Proof. Suppose G is abelian (written additively), generated by g_1, \ldots, g_n . We have the relations $m_{1,1}g_1 + m_{1,2}g_2 + \cdots + m_{1,n}g_n = 0$, etc, which give us a (possibly infinite) matrix of the coefficients. We can simplify the matrix by adding k times any column to any other; this is a change of generators $g_i \mapsto g_i + kg_j$. We can add k times any row to any other row; if rows R = S = 0, this is equivalent to R = 0 and kR + S = 0. We can apply these operations to make $m_{1,1}$ as small as possible. Subtract multiples of column 1 from other columns to make row 1 have only 1 nonzero entry $(m_{1,1})$. This is possible because $m_{1,1}$ divides $m_{1,2}$; otherwise $m_{1,2} = km_{1,1} + r$ for $|r| < m_1$, and we could subtract $km_{1,1}$ from $m_{1,2}$ and then subtract $r = m_{1,2}$ from $m_{1,1}$ to make $m_{1,1}$ smaller. We can kill off the first column in the same way, leaving $m_{1,1}$ as the only nonzero entry in the first column. Repeat this whole process with $m_{2,2}$ and so on to get a matrix where only $m_{i,i}$ is nonzero for $1 \le i \le n$. So our group is now generated by g_1, \ldots, g_n with the relations $m_{1,1}g_1 = 0$, $m_{2,2}g_2 = 0, \ldots$. So $G \cong \mathbb{Z}/m_{1,1}\mathbb{Z} \times \mathbb{Z}/m_{2,2}\mathbb{Z} \times \cdots \times \mathbb{Z}/m_{n,n}\mathbb{Z}$, where if $m_{i,i} = 0$, we just have \mathbb{Z} in the product.

Remark 1.1. This decomposition is unique if we insist that $m_{i,i}$ divides $m_{j,j}$ for i < j or if we insist that all $m_{i,i}$ are prime powers or 0, and order does not matter.

1.6 Groups of order $17, \ldots, 24$

17 is prime, so we have

- ► Groups of order 17
 - ► Z/17Z

Groups of order 18 have a normal subgroup of order 3^2 . We can then classify the groups by semidirect products to get 5 groups.

- ► Groups of order 18
 - ► 5 semidirect product groups
- ▶ Groups of order 19
 - ► Z/19Z

Groups of order 20 have a normal subgroup of order 5. We can then classify the groups by semidirect products to get 5 groups, as in the case of order 18.

- ► Groups of order 20
 - ▶ 5 semidirect product groups

21 = pq for p = 3 and 7 = q (and 3 divides 7 - 1), so we have

- ▶ Groups of order 21
 - $\blacktriangleright \mathbb{Z}/pq\mathbb{Z}$

22 = 2p, so we have

- ▶ Groups of order 22
 - $\blacktriangleright \mathbb{Z}/22\mathbb{Z}$

23 is prime, so we have

- ▶ Groups of order 23
 - ► Z/23Z
- ▶ Groups of order 24
 - \blacktriangleright the symmetric group S_4
 - ▶ Binary dihedral group (inverse image of A_4 under $S^3 \rightarrow SO_3$)
 - \blacktriangleright a dozen or so others...